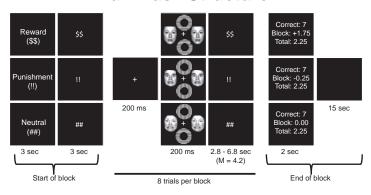


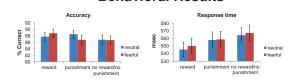
Motivation counteracts aversive processing in the amygdala and visual cortex

Mihai Sirbu¹, Sandra J.E. Langeslag^{1,2}, Srikanth Padmala¹, & Luiz Pessoa¹


¹University of Maryland – College Park; ²University of Missouri – St. Louis

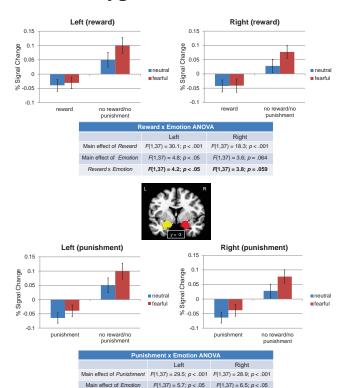
Introduction

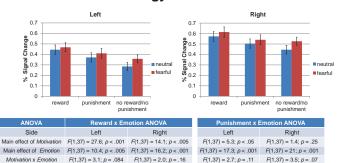
- Rewards reduce interference effects of task-irrelevant aversive stimuli (Padmala & Pessoa, 2014)
- · Purpose of this study:
 - (1) Understand the neural basis of this effect in the amygdala and visual cortex
 - (2) Examine how individual differences in anxiety and reward sensitivity relate to this effect
 - (3) Examine whether punishments reduce interference effects of task-irrelevant aversive stimuli in the amygdala and visual cortex


Main Task Structure

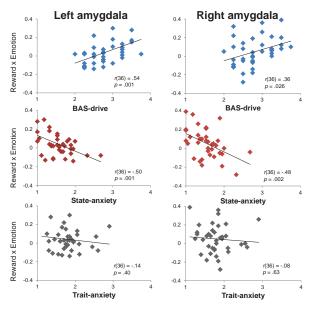
Study Methods & Analysis

- 38 participants (15 male, age range: 18 34 years)
- Task: 6 conditioning runs interleaved with 6 main runs
- Scanner, Parameters, & Software:
 - Siemens 3.0T Trio, 32 Channel
 - TR = 2.5 s, TE = 25 ms, FOV = 192 mm, 3 mm isotropic
 - All fMRI data preprocessed using AFNI & SPM
- ROI Analysis of Amygdala and Fusiform gyrus
 - Created Amygdala ROI (Desikan et al., 2006) & Fusiform gyrus ROI (Sabatinelli et al., 2011)
 - Multiple regression analysis with canonical hemodynamic response function
 - 6 main regressors (no reward/no punishment, reward, punishment x neutral, fear)

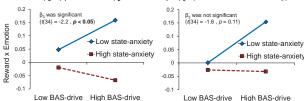

Behavioral Results


ANOVA	Reward x Emotion ANOVA	
	Accuracy	RT
Main effect of Motivation	F(1,37)=3.25, p=.079	F(1,37) = 51.0; p < .001
Main effect of Emotion	F(1,37) < 1; ns	F(1,37) = 4.5; p < .05
Motivation x Emotion	F(1,37) < 1; ns	F(1,37) < 1; ns

Punishment x Emotion ANOVA	
Accuracy	RT
F(1,37) = 1.77; p = .19	F(1,37) = 13.4; p < .005
F(1,37) = 2.45; p = .13	F(1,37) < 1; ns
F(1,37) < 1; p = ns	F(1,37) = 1.2; p = .28


Amygdala ROI Results

Fusiform gyrus ROI Results



Individual Differences

Moderation Analysis

 $Y = \beta_0 + \beta_1 *BAS$ -drive + $\beta_2 *State$ -Anxiety + $\beta_3 * (BAS$ -drive x State-Anxiety)

Conclusions

- · Rewards reduce the negative distractor processing in the amygdala
- Individual differences in anxiety and reward sensitivity are related to reward x emotion interaction in the amyodala
- Punishments did not reduce the negative distractor processing in the amygdala

Acknowledgments

This research was supported by National Institute of Mental Health (1R01 MH071589)

References

- Padmala S & Pessoa L. (2014) Motivation versus aversive processing during perception. *Emotion* 14(3): 450-454
 Desikan RS et al. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into
- gyral based regions of interest. NeuroImage 31(3): 988-980

 S. Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, Oliver WT, Beck S, Jeffries J. (2011) Emotional perception: meta-analyses of face and natural scene crocessino. NeuroImage 54(3):2524-33

Contact

Mihai Sirbu (msirbu@terpmail.umd.edu); Sandra Langeslag (langeslags@umsl.edu)